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Learning of patterns by neural networks obeying general rules of sensory transduction 
and of converting membrane potentials to spiking frequencies is considered. Any 
finite number of cells 0! can sample a pattern playing on any finite number of cells 
without causing irrevocable sampling bias if 6g = ,~ or Cg ~ M = 0. Total energy 
transfer from inputs of ~7 to outputs of -~ depends on the entropy of the input distribu- 
tion. Pattern completion on recall trims can occur without destroying perfect memory 
even if 0{ = N' by choosing the signal thresholds sufficiently large. The mathematical 
results are global limit and oscillation theorems for a class of nonlinear functional- 
differential systems. 

KEY WORDS:  learning; stimulus sampling; nonlinear difference-differential equa- 
t ions; global limits and oscillations; flows on signed networks; functional-differential 
systems; energy-entropy dependence; pattern completion ; recurrent and nonrecurrent 
anatomy; sensory transduction rules; ratio l imit theorems. 

1. I N T R O D U C T I O N  

Some networks of formal neurons  have been found  a,~) which can learn, simul- 
taneously remember,  and perform individually upon  demand  any n u m b e r  of space- 

time patterns of essentially arbi trary complexity. Learning in these networks occurs 
by formal  analogs of respondant  and  operant  condit ioning,  and  various mathematical  
phenomena  that occur during the condi t ioning procedure have analogs in psycholog- 

ical and physiological data. These papers have shown that  a single formal neuron  can 
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learn and control performance of an essentially arbitrarily complicated space-time 
pattern, such as a piano sonata or a dance, if its axon collaterals terminate on 
sufficiently many muscle groups, or on cell bodies which control these groups. 
Encoding an entire pattern in one neuron has a serious drawback, however: perform- 
ance of the pattern is wholly ritualistic, or by rote. 

Voluntary control of complex behavioral acts by a higher animal is not ritualistic 
in any obvious sense. In particular, voluntary control is sensitive to feedback from 
immediately prior performance and internal controls of this performance, and to 
fluctuating environmental demands, both external and internal. An adaptive response 
to feedback becomes possible only if the space-time pattern is learned by a collection 
of cells in which no one cell can irrevocably trigger performance of the pattern in an 
unmodifiable way. 

We therefore consider below situations in which a finite collection ~ Of cells 
encodes, or "samples," prescribed segments of a space-time pattern delivered to a 
finite collection ~ of cells by an independent input source. If g{ and N are disjoint, 

~B 

(a) 

(b) 

(c) 

Fig. 1 
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then the sampling is said to be nonrecurrent .  If, moreover, every cell in ~ samples 
atl cells in ~ ,  then the sampling is nonrecurrent and f u l l ,  as in Fig. 1 (a). Otherwise, 
the sampling is nonful l ,  as in Fig. l(b). In full sampling, each cell in O! can sample 
at essentially arbitrary times without interfering irrevocably with the sampling 
activity of other cells. In nonfull sampling, the sampling cells cannot sample at 
arbitrary times without interfering with each other. Instead, constaints on the onset 
times and duration of  sampling intervals by particular cells in 6g must be fulfilled to 
avoid mutual interference. These constraints have a natural neural interpretation, 
which is discussed elsewhere. (a~ If  6g = ~ ,  the sampling is said to be comple t e l y  
recurrent ,  as in Fig. l(c). If ~ :~ .~ but 6g n ~ :~ 0, then the sampling is called 
i ncomple t e l y  recurrent .  We will prove a general theorem about sampling of ~ by F# 
that reduces to these various cases, and which applies to arbitrarily large finite sets 
and ~ .  Once cells in 6g learn the space-time pattern segments that they have sampled, 
it is readily seen that they can reproduce these segments on ~ if they are later activated. 
These results therefore amount to a rather general discussion of  learning by respondant 
conditioning. (4) Applications to operant conditioning are also readily noticed once 
the learning mechanism is understood. (2~ 

The above results on learning can be joined to studies of pattern discrimination {5) 
yielding networks capable of  performing any number of essentially arbitrarily com- 
plicated output patterns selectively in response to any number of essentially arbitrarily 
complicated input patterns. The pattern discrimination work introduces networks 
whose components can be interpreted as hierarchies of cellular filters, or "feature 
detectors," since various cells in these networks can be activated by particular pattern 
features. Suppose that some of these cells can send signals to cells which control 
given muscle groups. The feature detectors can be interpreted as cells gg and the 
muscle control cells can be interpreted as cells .~. Our results then show that compli- 
cated input features can trigger complicated output responses. It is clear that the 
cells gg must be carefully arranged in realistic situations; for example, to avoid the 
simultaneous firing of ~ cells which control incompatible motor acts, and to guarantee 
that the correct 6g cells are activated by feedback. 

Two typical network types which motivate our results are given as follows: 

= - + Z - - vm ] + 
r r r  

- - / ; . d  + + Ii(t),  
r 

(+) (+)~-~ (+)r "- u~i zji  V )  + vii t x M  - -  rj i)  - -  F~i] + [xi(t)] +, 3Z k ] 

and 

where [w] + = max(w, 0) 
along with 

~(+)(t~ 

(1) 

(2) 

, (-) ( - ) , ,  v57)[xj(t  Fji] + uji zj i  V )  + - -  r j i )  - -  [ - -x i ( t ) ]  +, (3) 

for any real number w, and i, j - 1, 2,..., n; or Eq. (1) 

(+) ( + ) " "  [x,(t)l +)[x,(t  - v, , ]  +, = * - - U j i  Z j i  V I ) " @  "l"ji ) - -  (4) 
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and 

~r}-[)(t) = --S u(-)z(-)~ta5, 5, , ,  + v~T)[--x,(t)l+}[x~( t -- "r;3 -- P;,]+. (5) 

Elsewhere, (~) systems of this kind are interpreted psychologically, physiologically, 
and anatomically. In particular, let n cell bodies v~ be given with average potential xi( t) ,  
i ---- 1, 2,..., n. If  ]3k~ > 0 (~,~ > 0), then an excitatory (inhibitory) axon e + (e;~) 
leads from v~ to vi .  Denote the synaptic knob of ek + (e;i) by N~ + (N~), and let + zk~(t) 
( z~( t ) )  be the excitatory (inhibitory) chemical transmitter activity in N + (N~). The 

+ spiking frequency which is created by ve in eki (e~) in the time interval [t, t + dt] 
is proportional to [xk(t) -- T'~i] + ~ i  ([x~(t) -- I',~i] + 7~i). The time lag for the signal 

+ - i s / ~ i  to flow from vk to N + or N~ is ~ i ,  and the spiking threshold of e~ or e~i 
We can choose equal excitatory and inhibitory time lags and thresholds for our 
present purposes, since we require tha t /3~ ,~  ---- 0. When the signal from v~ reaches 
N + (N~) at time t, it causes release of excitatory (inhibitory) transmitter into the 
synaptic cleft facing v~ at a rate proportional to 

[xk(t - -  ~'k~) - -  Fki] + fl~iz(k+)(t) ([x~(t - -  ~ki) - -  P~i] + V~iz(~-O(t)), 

whence the rate of change of x~ increases (decreases) proportionately. All excitatory 
(inhibitory) signals are added (subtracted) at v~, as the term 

[x,.(t  ~'~3 + (+) - - r ~ ]  ~iz~i(t) 
~=I 

in Eq. (1) illustrates for the excitatory case. x~(t) also decays exponentially at 
the rate c~i, and is perturbed by known inputs I i ( t )  that are under control of an 
experimentalist or independent cells. 

The transmitter production processes are regulated by cross-correlation of 
presynaptic spiking frequencies and postsynaptic potentials. For  example, z}+)( t ) in  
Eq. (2) cross-correlates the presynaptic signal fi~i[xs(t - -  -c~i ) - -  /~5i] + received from v; 
by NJ +) at time t, with the value [xi(t)] + of the contiguous postsynaptic cell v~ ; hence 
the term v~ -) [xs(t - -  Tji) - -  Fsi] + [xi(t)] + in Eq. (2). This cross-correlation is positive 
iff % has a positive spiking frequency at time t --  ~'5i and vi has a supraequilibrium 

Z(+) potential at time t. ji (t) also decays exponentially at the rate u~. +~. z~?)(t) has 
a similar interpretation, with the difference that v~-[)[x j ( t -  "rs~ ) - -F j i ]  + [--x~(t)] + 
in Eq. (3) is positive only if v~ has a subequilibrium potential at time t. Speaking 
psychologically, x~(t) is the st imulus trace of v~, and z~+)(t) (z}~!(t)) is the exci tatory 
(inhibitory) associational strength of the association v5--+ v~. Elsewhere, (9) I give 
references which discuss psychological, physiological, and biochemical implications 
of these equations in a more leisurely way. 

The mathematical results which we will use to study these networks include 
functional-differential systems of the following form: 

~,(t) = A ( W , ,  t) x i ( t )  + ~. B k ( W , ,  t) zki(t) + C~(t) (6) 
k e J  
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and 

~'~i(t) = D~(Wt , t) z~i(t) -k E j ( W t  , t) xi(t) ,  (7) 

where i ~ / ,  j c 3", and the finite sets I and J of  indices are either disjoint or equal, 
corresponding to Fig. l(a) and l(c), respectively. The coefficients A, B~-, Dj ,  and E~- 
in Eqs. (6) and (7) are continuous functions of t, which can depend nonlinearly on 
the vector function W = (x~, zj~ : i ~ I, j ~ J) evaluated at all times no later than t, 
and on known functions of t. The generality of these coefficients means that peripheral 
sensory transducers and rules for transforming cell-body membrane potentials into 
axonal spiking frequencies can be of very general form without distorting the ultimate 
path of learning, once the network anatomy is suitably chosen. Particular transduction 
and spiking-frequency rules merely determine the rate at which particular patterns 
are learned by particular cells, and therefore the importance of these patterns to the 
prescribed cells. 

We will consider questions of energy-entropy dependence. In the case I = J, 
for example, suppose that a total input C(t)  through time is prescribed, and that a 
definite fraction 0~ of this input is delivered to the ith cell, i e L In other words, 
we deliver a spatial pattern with weights 0~ to the cells, and allow them to mutually 
interact. What pattern maximizes (minimizes) the total potential x = Z~z xi  and the 
total output of the network after the interaction takes place ? In various cases of 
interest, the pattern with minimal (maximal) entropy maximizes (minimizes) the 
total potential and output. Thus, if more order is introduced into the input pattern, 
then more output energy is available to drive the processing of these outputs at the 
next level of cells. These results are compatible with the fact that minimal (maximal) 
input entropy minimizes (maximizes) the destructive effects of inhibitory interactions 
on the total output, where these interactions exist. Elsewhere, (6) I discuss inhibitory 
interactions in terms of the principle of sufficient reason. The fact that inputs in which 
a certain amount of order already exists are given preferred treatment energetically 
stands in interesting contrast to the behavior of the closed systems of classical thermo- 
dynamics, and to the thermodynamic second law, which presages maximal entropic 
doom for the universe. In making this contrast, it is well to remember that the 
energy-entropy relations in our open systems are a consequence of the threshold 
and quadratic nonlinearities between x~'s and z;~'s that are the basis of evolutionary 
trands, or learning, in these systems. 

2. M A I N  T H E O R E H  

This section proves that systems which satisfy Eqs. (6)-(7) can learn a spatial 
pattern C~(t) = O~C(t), where Y~I 0~ = 1 and 0~ ~ 0, under rather weak conditions. 
Then, using results given elsewhere,(1.2~ this result can readily be applied to the problem 
of learning a space-time pattern with variable weights O~(t) = C~(t)[Zk~i Ck(t)] -1. 
The theorem studies the limiting behavior of the probabilities Xi(t) = x~(t)[Zk~z xk(t)] -1 
and y~( t )  = z j~ ( t ) [~ ,  zjk(t)] -1. 
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2.1. Theorem t 

Consider the system given by 

2i(t) = A(W~,  t) xi(t) q- ~ Bk(W~, t) zei(t) -k OiC(t) 
k~ar 

and Eq. (7), 

(8) 

~i(t)  = Dj(W~ , t) zji(t) + Ej(W~ , t) xt(t), 

where i ~ I and j ~ J, and the finite sets I and J of indices are either disjoint or equal. 
Let the initial data and inputs be nonnegative and continuous, and let the coefficients 
be continuous functions of t. Suppose furthermore that: 

1. All Bj and Ej are nonnegative 

F 2. B~(W~, v) dv -~ oe only if Ej(W~,  v) dv = c~ (9) 
0 0 

3. c ( v )  ely = oo ( lo )  
0 

4. There exist positive constants K1 and/s such that for all T >~ 0, 

f~+~C(v) exp[ j~  A ( W e , ~ ) d ~  d v > ~ K  1 if t>~K2 (11) 

5. The solution of Eqs. (7) and (8) is bounded. 
Then all the limits Pj~ = lim~_~ yji(t) and Q, = limt.o~ X~(t) exist, with Q~ = 0z. 
Furthermore, if 

fo~ Ej(W~ , v) dv = oe (12) 
�9 0 

then Pji = Oi . 

The following proposition is needed to prove Theorem 1, and is stated in terms of 
the functions Yi( t )= max{yji( t): j ~ J}, y~(t)= min{y~i(t): j ~ J}, Mi( t )= rain{ Yi(t), x(t)}, 
m~(t) = min{yi(t), xi(t)}, Yi.o(t) = max{Y~(t), Oi}, Yi.o(t) = min{yi(t), Oi}, 
Mi,o(t) = max{Yi,o(t), Xi(t)}, mi,o(t) = min{yi.o(t), Xi(t)}, X~~ = Xi(t) - -  0~, 
Y~~ = ysi(t) --  Oi, Y~~ = Yi(t) -- 0~, and y~~ = yi(t) --  Oi, for i e I and 
j ~ J .  

2.2. Proposition 1 

Let Eqs. (7) and (8) be given with nonnegative and continuous initial data, and 
suppose for convenience that ~,i~z xi(O) > 0 and ~ i d  z~.i(0) > 0 if Ej ~ 0. Let the 
coefficient functionals be continuous in t, with C and all Bj and Ej nonnegative. 
Also, let the solution of Eqs. (7) and (8) exist for all t ~> 0. Then for every time T >~ 0 
and all t ~> T, 

m~,o(T) <~ mi,o(t) <~ M~.o(t) <~ M~,o(T) (13) 
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If, moreover, C(t) = 0 for t ~> T, then 

mi(T)  ~ m~(t) <~ M~(t) ~ M d T ) .  (14) 

The functions Yi,o, .9i,o, X~ --  Yi.o, and X~ --  Yi,o change sign at most once, and 
not at all if y~,o(O)~ X~(O)<~ Yi.o(O). If, moreover, C ( t ) =  0 for t >~ T, then 
the functions I7~, 2~, X~ --  Y~, and Xi -- Yi change sign at most once for t ~> T, 
and not at all if y~(T) <~ Xz(T)  <~ Y~(T). 

It follows from Eqs. (13) and (14) that if Xi(t) and all yjdt)  are attracted close 
to 0~ by a sufficient amount of practice, then these functions will remain close to 0g 
even after practice ceases. See Theorem 2 of  my earlier paper (7) for a related discussion 
in the special case that 

B~(W~ t )  = E j ( W , ,  t )  - -  [3x~(t - -  ~) 
' E~xz~k(t)  

with I = J = {1, 2 ..... n}. 

2.2A. Proof of Proposition t. 
the following system of equations for X~ ~ anti- yj~(0): 

and 

where 

and 

Equations (7) and (8) can be transformed into 

X}~ = Z Fk(Wt , t)[y(k~(t) - X}~ - G(t) X}~ 

- (0) YJi (t) = Hj (W~,  t)[X~~ --  Yji(~ JJ 

(15) 

(!6) 

2 = Ax + ~ B-~z~ + C (22) 
le~J 

and 

~ = Djz~ + Ejx. (23) 

(21) 

Equations (15) and (16) follow from the equations X~ = x - ~ ( 2 i -  x~2x -1) and 
~j~ = zyl(~ji --  z~#szy 1) along with Eqs. (7) and (8), and the equations 

zj(t) = Z zji(t). 
i e l  

Fj(W~ , t) = Bj(W~ , t) zj(t)/x(t) ,  (17) 

a( t )  = c(O/x(t) ,  (is) 

Hj(Wt  , t) = Ej(W~ , t) x(t)/zj(t) ,  (19) 

x(t)  = E x~(t), (20) 
i,eI 
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The proof of Proposition 1 can now be completed using Eqs. (15) and (16) 
after noting that all coefficients in these equations are nonnegative, and that B(t) = 0 
if I(t) = 0. Cases t-3 below can be read off from Eqs. (15) and (16) by inspection. 
Since C(t) is continuous, C ( t ) =  0 on a sequence of nonoverlapping intervals 
J~ = [a , ,  b~]. On these intervals, and in particular if C(t) = 0 for t >~ T, Cases 1-3 
can be strengthened to yield Cases 4-6 below. Then the assertions of Proposition 1 
follow by pasting together the assertions of these exhaustive cases. 

Case 1. f f  X~~ ~ 0 and y~~ >~ O, then X~~ >~ 0 and y~~ >~ 0 for 
t >~ to. If, moreover, X~~ <~ Y~~ then X}~ <~ Iz~~ ]z~~ monotone 
decreasing for t ~> to. On the other hand, if X~~ > Y~~ then X~~ is mono- 
tone decreasing and all y~]l(t) are monotone increasing until the first time t = t~ 
at which X~~ Y}~ If  no such time exists, all limits Q~ and P~-i exist and 
Q~ >~ Pj~ >~ Oi. If  such a time does exist, the preceding case holds for all t ~> t t .  

Case 2. IfX~~ <~ 0 and Y}~ <~ O, then the arguments of Case 1 go through 
with inequalities reversed, and ylO) and y~o) interchanged. Thus, either all limits Q,: 
and Pji exist, or there is a tl such that y}~ ~ X~~ for t ~> t l .  

Case 3. If  Y~~ >~ 0 >~ yl~ and Y~~ > y~~ then either Y~~ 
>~ 0 >~ y}~ and Y~~ > yl~ for all t ~> 0, or we eventually enter either Case 1 
or Case 2. Suppose that the former alternative occurs. If, moreover, X~~ ~ [yl~ 
It/(~ then X~~ and all (0) YJi (t) are monotonic until the first time t = t2 at which 
X~~ ~ [y~~ Y~~ Thereafter, X~~ [y~~ Y~~ , and Y~~ is monotone 
decreasing, whereas yl~ is monotone increasing. Both limits Yi(~) = lim~_~ Y~(t) 
and y~(oo) = lim~_~ y~(t) therefore exist. If  Yr = yi(oo), all limits Qi and PJi 
exist and are equal. 

Cases 1-3 exhaust all alternatives, and readily imply Eq. (13) as well as the 
assertion concerning $zi.o , Pi.o , Xi -- Yi.o , and Xi -- Y~.o . 

For any t 0 , h ,  and t in J , ,  Cases 1-3 can be strengthened as follows. 

Case 4. If  Xi(to) ~ [yi(to), Yi(t0)], then Xi(t) ~ [yi(t), Yi(t)] for t ~> t o , where yi(t) 
is monotone increasing and Yi(t) is monotone decreasing for t >~ to. 

Case 5. If  X~(to) > Yi(to), then Xi(t) is monotone decreasing, and all yji(t) are 
monotone increasing until the first time t = t 1 > t o at which Xi(t) =- Y~(t). Thereafter, 
Y~(t) is monotone decreasing and yi(t) is monotone increasing by Case 1, so that IT-~(t) 
changes sign at most once, and y~(t) is always monotone increasing. 

Case 6. If  Xi(to) < yi(to), then the conclusions of Case 5 hold with Yi replacing Yi 
and all inequalities reversed. 

Cases 4-6 imply Eq. (13) as well as the assertion concerning ~ ,  Y i ,  Xi -- Yi ,  
and Xi -- y~. 

In the statements above concerning the derivatives ~ i ,  Yi,o, :Pi, and Pi.o, 
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left- and right-handed derivatives are intended where two-sided derivatives do not 
exist. The statements concerning monotonicity do not intend strict monotonicity, 
as the following corollary emphasizes. 

2.3. Corol lary 1 

pj~(t) : 0 if Ej(Wt,  t) = 0, and X~(t) = 0 if all Bj(Wt,  t) : 0 and C(t) : O. 

The fact that y~i(t) does not vary in intervals for which Ej(Wt,  t) = 0 is the 
basis for sampling in our networks. Suppose, for example, that an arbitrary space-time 
pattern with weights O~(t) = C~(t)[~k~1 Ck(t)] -1 perturbs the system, but that Ej(W~, t) 
is positive only at times t for which OJt) : 0j. Then y~(t) will only vary at these 
times, and will, apart from momentary fluctuations of Xi(t) toward the values of 
other yk~(t) with E~(Wt, t) > O, be attracted toward 0~. If, however, Ej(Wt,  t) is 
positive at times during which Oi(t) varies throughout an interval [0~ -- e, 0~ + e], 
then yj~(t) will be attracted to a suitable weighted average of all the values in this 
interval. It is therefore often desirable either that (1) Ej(W~, t) and only Ej(Wt,  t) 
is positive in intervals of such short length that O~(t) cannot substantially vary during 
these intervals, or that (2) the input energy C(t) is sufficiently great when Ej(W~, t) > 0 
to quickly drive Xi(t) and hence yj~(t) toward 0 i before Oi(t) can substantially change. 
Elsewhere, (5) it is shown that a sampling interval of prescribed duration can be 
achieved, given even a conditioned stimulus of unlimited duration, using the 
mechanism of nonrecurrent inhibition. 

By the above paragraph, a space-time pattern with weights O~(t) can be approxi- 
mately encoded as a sequence of spatial patterns with weights 0~(k~:), k = 1, 2 ..... for ~: 
sufficiently small, by letting successive probability distributions ytk) ~ {yki : i  ~ I} 
sample the pattern sequentially for brief intervals in "avalanche" fashion, as discussed 
elsewhere. (2,'~) The closeness of fit of y~ to the weights O~(k~) will depend crucially on 
the limiting statements of Theorem 1, which we now prove. 

3. P R O O F  O F  T H E O R E M  1 

By Eq. (10) and Proposition 1, Cases 1-3 exhaust all possibilities. It is convenient 
to first consider the subcases of Cases 1 and 2 in which all limits are known to exist 
because X~ and all y~-~ are monotonic for large t. Suppose, for example, that 
X~~ > Y~~ and X~~ ~ 0 for all large t in Case 1, and let these inequalities 
hold at all t ) 0 for convenience, Then by Eq. (15), X~ ~ ~< --GXJ ~ and Xi decreases 
monotonically to a limit Qi ~ Oi. Thus, ~0)  ~< G(O~ -- Qi), or in integral form, 

t 

0 <~ Xi(t) <~ X~(O) q- (Oi --  QO ~ G(v) dv 
,d 0 

for all t ~ O. Supposing that Q~ > 0 i , we will derive a contradiction. Since x(v) is 
bounded above, say, by K~ 1, 

t 

03 f c dv <~ X~(O) <~ 1 K3(Q, # 

0 

8 2 2 / z / z - 7  
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for all t ~> 0. Thus, ~ C dv < 0% which contradicts Eq. (10). A similar procedure 
can be used to show that Q~ = 0~ in the monotonic subcases of Case 2. 

We now show that Pj~ = 0~ in the monotonic subcases if Eq. (12) holds. Consider 
the subcase of Case 1. We know that Q~ = 0~, and for t >~ 0 that X~~ ~ Y~~ 
and X~~ O. Thus also Y(i~ 0 for t>~ 0. Otherwise, there will exist a T 
such that Y~(T) > 0~, and consequently X~(t) >~ Y~(t) >~ Y~(T) > 0~ for t ~ T, 
since Y~(t) is monotone increasing if X~(t) > Y~(t). In particular, Q~ > 0~, which is 
impossible. 

We can therefore restrict attention to the case in which X}~ >~ 0 >~ Y~~ 
for t >~ 0. Then by Eq. (16), for every j e J, 

.9,~ >~ Hj(O~ -- y~) (24) 

and moreover yj~ increases to the limit Pj~ ~< 0,. Thus, p;~ ~> (0~ -- P~) H~- for all 
large t, or without loss of generality for all t ) 0. The inequalities 

1 >~ yj~(t) -- yj~(O) >~ (0~ -- Pj~) f Hj dv 
0 

therefore hold for all t ~ O, and, consequently, 

fo~ Hj dv < oo (25) 
0 

if 0~ > Pj~. Equation (25) will now be shown to contradict Eq. (12), and thus 0i = Pj~. 
Since zj is bounded, Eqs. (19) and (25) imply J'~ xE~ dv < m. But, by Eq. (22), 

x(t) ~ x(O)exp [f: A dr] + f l  C texp [f: A d~]t dv 

where x(0)/> 0. Equation (l l) with T = 0 therefore implies that x(t)>~ K1 for 
t ~> K~, and, in particular ~ Ej dv < 0% which contradicts Eq. (12), and thereby 
proves Psi  ~ Oi" 

Only the nonmonotonic subcases of Cases 1-3 remain, and these are listed below: 

I. Y~~ >~ X~~ >~ 0 and y~~ ~ 0 with Y}~ monotone decreasing, 
for t>~0.  

II. y~~ <~ X}~ ~ 0 and Y~i~ <~ 0 with y~~ monotone increasing, 
for t~/- 0. 

III. X}~ ~ [y~~ Y}~ and yl~ <~ 0 ~ Y~~ with y~~ monotone 
increasing and Y~~ monotone decreasing, for t >~ 0. 

Only Case I will be explicitly considered, since Cases II and III can be treated by 
an analogous method. First, we treat the subcase in which 
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Then, for every E > O, there exists a T~ such that t >~ T, implies 

f 
~ 

B~ dv ~ e/2tz 
k ~ J  t 

where /z = sup zjx -1 < ~ .  By Eq. (15), 

(26) 

-2} o) <~ Z F~ -- GX} ~ , (27) 
k e J  

and thus for t >~ T~, 

which by Eq. (26) implies 

Equation (10) and the boundedness of x(v) now imply Qi -~ Oi. 
We can now show that all P~ exist in this case. By hypothesis, X~(t) ~ Oi and 

yj~(t) ~ 0~. Since Q~ = Oi, for every E > 0 there exists an St such that 
Oi ~ Xi(t) ~ Oi + E for t >~ S~. Thus if y~(t) > O~ + e for some t >/S~, then 
yj~(t) decreases to a limit Pj~ ~> 0~ + e, or eventually y~i(t) <~ O~ + e. In other 
words, either Pj~ exists or yji(t) <~ Oi § E for every E > 0 and t sufficiently large. 
Since also yj~(t) >~ 0~, Pj~ exists in all cases. If  Eq. (12) holds, Pj~ = 0~ can readily 
be proved as in Eq. (24) using Qi = Oi. 

It remains only to consider case I - -and  cases II and III analogously--if 

~ s f [  B~dv = ~ .  (28) 

Partition Y into two sets J(1) and Y(2) such t h a t j  e J(1) iff 

dv (29) 
0 

By Eq. (28) and the nonnegativity of Bj-, J(1) :;~ 0, and we can define the function 

1?~ ~ max{ (0) = y ~  : j ~ J ( 1 ) } .  

We now show that ]?~~ ~- l imv~ ~~ exists in Case I if Eq. (28) holds. To do 
this, note by proposition 1 that 

whenever (d/dt) ~'l~ @ O. Thus, if there exists a T such that either X~~ >~ f'~~ 
for all t ~> T, or X~~ <~ fz~~ for all t ~> T, then IY~~ exists. It remains to 
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consider only the case in which X}~ -- ff')~ oscillates at arbitrarily large times. 
Define the functions L (i) = ~2e~s(i) Fk, i = 1, 2. Then by Eq. (15), 

X-}0) + (?}o) _ x(io)) L ( ,  _ OX?). (31) 

Suppose that X~~ >~ Y~~ only in the disjoint sequence of intervals [S/~, Tik], 
k ----- 1, 2 ..... Then lT"l~ = X~~ for all k = 1, 2,..., and by Eq. (31), 

2}o)(0 <~ L(~)(t), t e [&~ , TM, 
which implies 

and, in particular, 

Sik 
(32) 

~ (o) f ~  Y~~ <~ Y~ (S~) + L(2)(v) dv (33) 
Si 

eo 
by the nonnegativity of L t2). Since by definition of J(2), f0 LI~)(v) dv < 0% the oo 
function u(~)(T) ~ f r  L(2)(v) dv monotonically decreases to zero as T -~  oo. Thus 
by Eqs. (30) and (33), the hounded and continuous function f~~ is alternatively 
monotone decreasing or increasing by an amount that approaches zero as t--~ oo. 
It readily follows that ]7l~ exists. 

Inequality (31) along with the existence of Y~~ will now be used to prove 
that 17~~ = Qi = 0i. Then the existence of all PJi for j s J(2) can be proved as in 
the paragraph following Eq. (27). Define the functions M = (d/dt)[log(x -- A -- G)] 
and N = (d/dt)[log(x -- A)]. By Eqs. (17), (18), and (22), L (11 + L t~l = Zk~jFk = M. 
Equation (31) therefore implies 

j~}0) ~< L(~) + Mfr~o) _ Nx}O), (34) 

which can be expressed in integral form for any t ~> T ~> 0 as 

X}~ <~ P}~ T) § Q}~ T) + Rt~)(t, T) (35) 

using the notation 

P}~ T )=  X}~ I f ;  A dr], (36) 

Q~O'(t, T) = x - l ( ' ) i t  T fir~O'(v) M(v)x(u) texp [f2 A des]l dr, (37) 

and 

R(2'(t, T) = x - l ( t ) f ;  L(2'(v)X0) ) lexp [ f l A  d~]l dr. (38) 

We now estimate each of these terms from above. First note that 

R(e)(t, T) <~ U(2)(t, T) ~ f t  L(~)(v ) dr. 
,I T (39) 
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This follows from Eq. (22), which shows that ~ ~> Ax, and thus that 

exp [fl A d~] <~ x-l(v)x(t). 

To estimate Eq. (37), we first eliminate the case in which ff'~~ < X~~ for all 
t >~ T and some T ~> 0. In this case, Eq. (31) implies X~ ~ <~ L (~) -- GX~ ~ for t >~ T, 
and since, by Eq. (30), ~l~ is increasing for t ~> T, 

ff((o) <~ L(2) _ ~O)(T)G for t >/T,  (40) 

where we can assume that f'~~ > 0 without loss of generality. Integrating Eq. (40) 
cx~ 

between Tand oe then readily yields the inequality J'0 C(v) dv < 0% which contradicts 
Eq. (10). 

Thus, either Y~~ >~ X~~ for all t ~> T and some T sufficiently large, or 
ff'~~ -- X~~ changes sign at arbitrarily large times. I f  ~~ >~ X~~ for t ~ [T, S], 
then ~~ <~ ~~ since ~~ is monotone decreasing. If  ffr~~ does not 
exceed X[~ for all t >~ 0, then there exists a disjoint sequence of intervals [S~I~, T~], 
k =  1,2,..., such that Y~~176 and X~~ f'~~ for 

c o  

t e Uk=~[Sik, Tik]. For any t E [S~, T~], Eq. (32) holds. Pasting these cases together, 
we find that 

Y~~ ~ fr}~ + U(2)(T) (41) 

for all t >~ T and any 

r - {t: ?}~ x}~ (42) 

Returning to the upper estimate of Eq. (37), note for any T ~ ~ and all t ~> 2", 
that Eqs. (37) and (41) yield 

where 

Q~~ T) <~ [IT-~~ -+- U(2)(T)] V(t, T), 

Note also that 

V(t, T ) =  x-a(t)exp [fl A d~] ft  r ($c - A x -  C)lexp [--f~ A d~] I dv 

= 1 - - x ( T ) x - l ( t )  exp [f~rA d r ] -  x-Z(t) f~z C(v) lexp [fl A d(]l dr. 

(43) 

Invoking Eq. (11) at any t ~> T + K~ provides the inequality 

V(t,T)<~ I -- iz--x(T)x-l( t)exp[f;Adv] (44) 
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with/x ~= (K~/sup x) ~ (0, 1). Bringing together Eqs. (32), (35), (36), (39), (43), and (44), 
we finally conclude that 

0 <~ XJ~ <~ U(2)(T) q- (1 -- /z)[17}~ q- U(2)(T)] (45) 

for any T ~ ~i  and all t >~ T + K2. Inequality (45) and the existence of 17~~ 
are the basis for all that follows. 

Suppose first that there exists an increasing sequence of times Wr e ~ ,  with 
lim~,~ Wr ----- 0% such that lim~-~ 17~~ = 0. Then by Eq. (45), Qr exists and 
equals 08, and the proof can readily be completed. Supposing that no such sequence 
of  W~'s exists amounts to saying that ~ ~  >~ ~1 for some ~/ > 0 and all T e  ~ .  
But since 17~~ is monotone increasing for all t r ~ i ,  we can then assume that 
17~~ >~ ~ for all t >~ 0. Moreover, since in Eq. (45), U(~)(T) monotonically appro- 
aches zero as T--,  0% there exists a W~ ~> 0 and a v s (0, 1) such that 

x}~ <~ (1 - 0 177)(r) (46) 

if T e  Og~ c~ [W~, co) and t ~> T + / ( 2 .  Since trivially, 

~}~ ) -- X}~ = 17~~ -- 17}~ -}- ]z~~ _ X}~ 

for any t and T, Eq. (46) shows that 

17}%) - x}~ >~ ~ } ~  + 177)(0 --  17~~ (47) 

if T e  ~ n [W1, oo) and t >~ T +  K~. Since ~ includes arbitrarily large numbers 
and 17~~ exists, Eq. (47) implies the existence of  a time W2 such that 

171~ - x}~ >~ (~/2) ~7~~ for t >~ w~ 

and, in particular, that 

17}~ - x}~ >~ (~v/2) > o for t ~> m~.  (48) 

The inequality (48) will now be shown to be impossible, thereby completing the 
proof. 

By Eq. (48), there exists a Wa such that 

17}~ 0 >~ 17}~ -- (v~//8) > 17}~ -- (3v~/8) >~ X~~ t >~ W3. 

Thus if for any j e  J(1) and any t ~ W~, y~~ 17~~ (vr//4), then 
~(~ Y~~ for all t . In other words, every j s J(1) such that 17~o)(t) = y ~  t ,  j~ , . < >~ W3 -(o)rt~ 
at any t ~> W3 satisfies y~~  X~~ v~//8 for all t >~ W3. By Eq. (16), 

e~ 

j~(q)(t~,~,, ~< --(v~1/8 ) Hj(W~ , t) for t ~> Wa , and thus fo Ej dv < 0% which by Eqs. (9) 
and (29) contradicts the fact that j ~ J(1), and completes the proof. 
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4. E X C I T A T O R Y  N O N R E C U R R E N T  FULL N E T W O R K S  

Such a network of type (3)-(5) satisfies the equations 

S~(t) = --a~x~(t) + I~(t), (49) 

and 

~r = --ax,( t)  -k fi ~, [x~(t -- ~'k) - - / ~ ] +  zki(t) + I~(t), 
k = l  

(50) 

~ji(t) = --ujzji(t) + vj[xj(t --  "c~) -- / ' j]+ xi(t), (51) 

where j ~ J = {i, 2 ..... m} and i ~ I = {m + 1, m + 2 ..... m q- n}. Theorem 1 clearly 
implies the following result for such a system. 

4.1. Corollary 2 

Let the system (49)-(51) be given with nonnegative and continuous initial data 
X--,m+n 

and inputs. Suppose Ii(t) = O~I(t), where z_,~=m+l 0~ = 1, 0~ ~> 0, and for every 
T ~ 0 ,  

fT+t e_~7.+e_~)i(v ) dv >~ K1 if t ~>/s (52) 
T 

for suitable positive constants/s and K.~. Also, let the solution be bounded. Then 
all limits Pj~ and Q~ exist, with Q~ = 0~. If  moreover 

( 
- d v  (53) exp [-- %@ ~)] Ij(s e) d~: - - / ' j  = 0% 

0 

then P~.i = 0i. 
In applications, the inputs often dominate an iterated input, in the sense that 

I~(t) : ~ J j ~ ( t -  tj,~) 
k=O 

where Jjk(t) >~ J~(t) and 0 < ~- ~ tj.~+l - t~ ~< ej < m for all t >~ 0 and k = 0, 1, 2,.... 
Here J~.(t) is an input pulse; namely, a continuous nonnegative function that is positive 
in a finite interval. The function J ~ k ( t -  tjk) can, for example, correspond to an 
experimental event with onset time tj~. For any such input /j(t), Pj~ = 0~ holds 
by Eq. (53) if 

/ i  t 

sups | exp [-- a~(t -- v)] Jj(v) dv > 
, 1  0 

An excitatory nonrecurrent full network of type (3), (6), and (7) satisfies the 
equations (49), (50), and 

~;ji(t) = {--ujz~(t) -k vjx~(t)}[xj(t -- z~) -- /'j]+. (54) 
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Corollary 2 clearly holds for this system as well. Corollary 1 also holds for the more 
general systems in which [xj(t  - -  ~-~) - -  Fj] + is replaced by f j ( x j ( t  -- ~-j)) with fj(w) 
monotone increasing, continuous, and nonnegative. 

5. I N H I B I T O R Y  N O N R E C U R R E N T  FULL N E T W O R K S  

Such a network of type (3)-(5) satisfies the equations (49), 

~,(t) = - ~ x ~ ( t )  - ~ ~ [x~(t - ~,3 - / ~ ] +  z~,(t) - x,(t), 
k = l  

and 

(55) 

e~( t )  = --u~z~i(t) + vj[xj( t  - -  T~) - -  /'~]+ [--xi(t)] + (56) 

with nonpositive and continuous initial data for the xi's, nonnegative initial data for 
the z;~'s, and nonnegative inputs. Under these circumstances, Eqs. (55) and (56) can be 
transformed into Eqs. (50) and (51) using the change of variables xi --+ ~i ~ - -x i .  
This is because x i ( t )  <~ 0 for all t >~ 0, so that Eq. (56) can be written 

whereas Eq. (55) becomes 

~i(t)  = - - ~ i ( t )  -k fl ~ [xk(t - -  -r~) - -  Fk] + z~i(t) -k l i ( t ) .  
k = l  

Thus learning of inhibitory patterns is also a special case of Theorem 1. A similar 
remark holds for inhibitory networks obeying Eqs. (49) and (55) and 

~j~(t) ---- { - -u j z j i ( t )  + vj[--x~(t)]+}[x~(t - -  ~rj) - -  F~] +. (57) 

Physiologically speaking, learning of inhibitory patterns can be interpreted as 
respondant conditioning of inhibitory transmitter production. Livingston t4) gives 
related data. 

6. E X C I T A T O R Y  C O M P L E T E L Y  RECURRENT N E T W O R K S  

Such a network of type (3)-(5) satisfies Eq. (51) and 

Jei(t) = - - a x i ( t )  + fl ~ [xe(t - -  -r~) - - / ' e ] +  z~i(t)  -k l i ( t ) ,  
/ c= l  

where i, j = 1, 2,..., n. 

(58) 

6.t. Corollary 3 

Let Eqs. (51) and (58) be given with nonnegative and continaous initial data and 
inputs. Let I~(t) ~- Oil(t), where ~t~z Oi = 1, 0i > 0, and l ( t )  satisfies Eq. (52) with 

Ka[1 -- exp(--~K2)] -1 > maxi(1-'~/Oi) (59) 
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Also suppose that the solution is bounded. Then all limits Qi and Ps~ exist with 
P s i =  Q i =  0i. 

n 

6.1.1. Proof.  Let x = 52i=z xi �9 Then by Eq. (58), 

"~+"~ exp[-- a(t -k nK2 --  v)] I(v) dv x(t)  >~ x(nK~) exp[-- ~(t -- K2)] -? j .K, 

for every t ~ [nKz, (n -? 1) K2] and n = 0, 1, 2 ..... In particular, Eq. (52) implies 

x[(n + 1)/(2] ~> x(nX2) exp(--aK2) -k g l  

>~/(1{1 -- exp[--~(n + 1) Ke]}[1 -- exp(--~K2)] -~. 

Thus, given any ~ > 0, there exists a T~ such that 

x(t)  >~ Ka[1 -- exp(--~K2)] -~ -- ~ (60) 

for t >~ T~. By Theorem 1, Q~ = 0i, and hence for every e > 0, there exists a T~ 
such that 

[ x j ( t  - " ~ s )  - r ; ]+ ~> [(0; - ~)x( t  - " ~ s )  - r ; ]+  

for all t ~> T,.  Thus for all t >~ max(T~, T~), Eq. (60) implies 

[xj(t --  rs) - -  _Pj]+ ~> [(0s -- e){Kl[1 -- exp(--~K2)] -1 -- ~} --Ps]+ 

and by Eq. (59), for sufficiently small ~ and e, 

xs(t - -  zs) - -  Pj >~ (Oj - -  E){K~[1 -- exp(--~K2)] -~ -- 8} -- Fs > 0. 

mo 

In particular, for every j ,  fo [ x j ( v -  ~ j ) - / ' j ] +  dv---- o% which by Theorem 1 
implies Psi = 0i. 

Condition (59) means heuristically that a sequence of input pulses of sufficient 
intensity and/or duration can learn any pattern with positive weights. For example, 
let I(t)  be a periodic sequence of rectangular input pulses with intensity I, duration ~, 
and interpulse interval/z. Then by Eq. (59), all Psi = 0i if 

I(e ~ -  1) /2i (61) 
a(e ~(~+") --  1) > maxi ~ .  

Corollary 3 also holds for systems in which [ x j ( t -  r j ) - / ' j ] +  is replaced 
by f j (xj( t  -- ~-j)), where f~(w) is monotone increasing, continuous, and nonnegative. 
Then Eq. (59) is replaced by the condition miny~(0jKa[1-  exp(--~K2)] -I) > 0. 
For example, iff~(w) ----- log(1 + ~Ts + w), for some ~/s > 0, then PJi = 0i given any 
positive choices of/(1 and Kz in Eq. (52). The appearance of a positive ~s in this 
choice of f j  means that the network axons are always spontaneously active, and 
therefore continually sample the pattern weights at other cells. 
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The upper bound/(111 - -  e x p ( - - o ~ g 2 ) ]  - 1  in Eq. (59) can usually be increased by 
iterating the equations (51) and (58) at equally spaced discrete time steps. For 
simplicity, we consider below the case in which all ~-~, u~, and v~ are independent of j, 
and/(2 = ~-. 

6.2. Corollary 4 ("Bootstraps") 

Let Eqs. (51) and (58) be given with nonnegative and continuous initial data 
and inputs. Let all z~-, uj,  and vj be independent of j ,  and suppose [~(t) = OJ(t), 
where Z~=z 0~ = 1, 0~ > 0, and I(t) satisfies Eq. (52) with K2 = z for some K~ > 0. 
Define the sequence x ~ by the initial data, x (-~ = x ~~ = 0, and the recursion 

x(~+~' >~ Kz + x(~)e-~ + ~uu(1- -e -~)  ~ [0~x(i' -- P~] + ~ [Okx"'~)---P~]+ x("'e ('~-~)~ 
~=1 ~=1 (62) 

for i ~ 0, and suppose 

K > max~(FjO~) (63) 

where K = lim supi-~ x (il. Also suppose that the solution of Eqs. (51) and (58) is 
bounded. Then all limits Q~ and P~ exist with Pj~ -- Q~ = 0~. 

6.2.1. Proof. By Theorem 1, Q~ = 0~. Hence, by choosing t sufficiently large, 
Eqs. (51) and (58) can be replaced by 

and 

2i(t) = --axi(t)  -k fi ~ [O~x(t --  7) - - / ' k ]  + zki(t) -~ Oil(t) 
k = l  

~ji(t) -= --uzji(t) q- v[Ojx(t - -  r) --/~3.] + xi(t) 

without destroying the validity of an inequality such as Eq. (62) at which we aim. 
In particular, 

2(t) ---- - -~x(t)  q- fl ~ [Okx(t --  r) - -  F~]+ z~(t) -+- I(t) (64) 

and 

~j(t) = - u z j ( t )  + v[Ojx(t - .~) - / ' j l  + x(t) .  (65) 

Starting with zero initial data in Eqs. (64) and (65), we will find an asymptotic 
minorant for x(t) by iterating Eqs. (64) and (65) every r time units. This iteration 
yields 

x ~i+1) >~ x~)e - ~  + (fi/~) ~ [Okx(i' - -  Pk]+ z~' + Kz (66) 
k = l  

and 

z~ ) >~ z(i-l~e -~'~ q- (v/u)(1 --  e-~'~)[Oex ~i) - -  1~1 "~- x (i), (67) 
k 
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where z~ -~) = 0. Equation (67) implies 

i 

z (~) >~ (v/u)(1 --  e -~ )  ~ [Okx ~)  -- /~k] + x~ )e  (m-i)'~ 
fr~=3_ 

which, when substituted into Eq. (66), proves Eq. (61). 
Since K = lira s u p ~  x (o, Eq. (63) implies the existence of an E > 0 such that 

x(tk) >~ ~ + maxi(Fi/O~) on an increasing sequence of points tk with limk-~ t~ = oo. 
By the boundedness of the solution and inputs, Eq. (58) also implies the boundedness 
of  ~(t). Thus, there exists a 3 > 0 such that x(t)  >~ (E/2) + maxi(Fi/Oi) on an 
increasing sequence of disjoint intervals [we, w~ + ~]. In particular, for every j,  

co 

~o [xj(v - -  "r) - -  Fj] + dv = 0% which by Theorem 1 implies P~'i = Oi. 
Speaking heuristically, Eq. (63) says that if Ka(1 -- e-~') -~ is sufficiently large, 

and the gaps between successive values of  ['kO; ~ are sufficiently small, then the 
0 interaction term ~=1[  ~ x ( t -  " r ) -  Fk] + zk(t) can boost x(t)  up by its own 

"bootstraps." For example, if, for i sufficiently large, x ") > max~-(/~/0j), then 

K/>/s - -  e - ~ 0  -1  q-  (fiv/au) ~ [0~KI(1  - -  e - ~ ' )  -1  - - / , ] 2 .  
k = l  

In situations for which I(t)  dominates an iterated input, the above conditions 
can often be improved by estimating the maximum value of  x(t)  created by an 
individual input pulse, rather than its minimum, and then iterating the maximum 
estimate. For example, condition (61) can then be replaced by 

I(e ~a --  1) e ~ G 
~(e ~(a+") -- 1) > max/~,: 

For  such estimates, x; need not exceed/-'~, at all large t to guarantee Eq. (12). 
The constant K is a lower estimate for the maximum/~ of the set L(C +) of limit 

points of the curve C + defined by x(t)  for t >~ 0. A limit point L is any point for 
which there exists a sequence of times tl~ with lime-~ tk = oo such that lim~-~ x(tk) = L. 
Since the solution of Eqs. (51) and (58) is bounded and continuous, L(C +) is a 
compact interval (Hartman, (8) Chapter 7), and thus /s  exists. For  every j such that 
/~ >/~fl~-l, p~ = G .  For  every j such that T'jOj 1 >/~ ,  there exists a Tj such that 

oo 
[x~(t) -- Fj]+ = 0 for t >~ T~. Thus, only i f / s  = F~071 can f0 [x~.(v) --/ '~]+ dv < oo 
hold without [xj(t) --/3-]+ vanishing identically for all sufficiently large t. 

7. COMPATIBILITY OF EQUIDISTRIBUTED PATTERN COMPLETION 
A N D  PERFECT MEMORY 

In a nonrecurrent and full network, it follows from Theorem 1 that each sampling 
cell v~, i ~/ ,  can reproduce a given previously learned pattern on all the cells vj, j e J, 
without destroying the memory controlled by other cells v~, i ~ I. In a completely 
recurrent network, the existence of  such a situation is not a priori evident, since 
perturbing a single cell v, can perhaps create signals that reverberate throughout 
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the network and thereby destroy the patterns encapsulated in the synaptic knobs. 
Indeed, suppose that the network given by Eqs. (51) and (58) has practiced the pattern 
with weights 0~ to a high degree; that is, y~(t) ~ O~ when I(t)  is shut off. Let an 
input pulse be delivered to a single vk at a later time as a recall trial. Will such pulses, 
if repeated sufficiently often in an effort to have the network reproduce its stored 
memory, eventually destroy the memory of the pattern weights? The answer is "yes" 
if all thresholds/'5 = 0. The answer is "no"  if the thresholds/2~ are so large that the 
signal received at any v~ from v~ is insufficient to create further signals from vi. 
Indeed, by Corollary 1, if all [xi(t --  -ri) - - / ' j +  = 0, i =/= k, then all jpij(t) = O, 
whereas when xT~(t --  .r) > l"k, y~( t )  is attracted toward Oi, and "reminiscence," 
or spontaneous memory improvement, occurs [cf. Grossberg, (9) Part II(1)]. In this 
sense, high signal thresholds localize the memory of the network and produce context 
effects in response to localized inputs (cf. Grossberg(l~ 

The fact that each cell separately in a completely recurrent network can reproduce 
the entire pattern is a form of  pattern completion. The fact that any cell can reproduce 
the pattern is called equidistributed (or equipotential, or mass action) pattern compe- 
tion, and might suggest to an experimentalist surveying such a network that the 
memory is somehow diffusely spread over all the cells. Such an experimentalist 
might reasonably hope that this "mass action" effect of the cells implies a lack of 
specificity in the way memories are stored. Such an impression would be confirmed 
if very large test inputs were presented to the networks, since the signal thresholds 
could be readily overcome. (Contrast the leveling effects of inhibition, and compare 
the effects of electroshock.) But the network dynamics would seem paradoxical if 
small test inputs were presented, since then perfect memory, pattern completion, and 
specificity of pattern representation can be simultaneously achieved. 

In networks such as those in Eqs. (51) and (58), even though the ratios y~i(t) 
remember pattern weights perfectly if all signals equal zero, the associational strengths 
zki decay exponentially. To potentiate the amount of transmitter without changing 
the weights yk~(t), it suffices, by the above remarks, to let small individual test inputs 
perturb each cell vk separately at widely spaced times. In networks such as those 
in Eqs. (54) and (58), by contrast, all zk~(t) are constant in intervals when no signals 
are positive; hence, memory is perfect and transmitter potentiation is unnecessary. 
The difference between the decay law in Eqs. (2) and in (4) can be heuristically traced 
to whether or not Ca ++ and Na + enter all membrane channels through mutually 
independent pores. 

8. C O N D I T I O N S  G U A R A N T E E I N G  B O U N D E D N E S S  

This section lists some results that guarantee boundedness of excitatory non- 
recurrent full networks and completely recurrent networks. The results show that 
arbitrarily large bounded inputs are compatible with an arbitrarily small memory 
decay rate us if the common decay rate c~ of all potentials xi(t)  is sufficiently large. 
In both cases, for fixed us, the input can grow essentially like the square root of ~, 
given Eq. (51). Throughout the following discussion, let t3 = max 5 135, f '  = mini f'~, 
u ~ mini u s , and v = maxj vj. 
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8.1. Proposi t ion 2 

Let Eqs. (49)-(51) be given with nonnegative and continuous initial data and 
inputs. Suppose that there exists an E > 0 such that for all sufficiently large t, 

]+ 2(~u)Z/~ >~ E -? exp[-- ~-(t -- rj --  v)] Ij(v) dv - -  Fj  . (68) 

Then the solution of Eqs. (49)-(51) is bounded. In particular, the solution is bounded if 

2(au)l/----~/>e + ~ lim supa ( f l  exp[-- %-( t -  v)] I j ( v )dv  - -  -Pj), 

so that sampling times of each vj can then be arbitrarily chosen. 

8.1.1. Proof.  Define U and V by the equations 

(7(t) = --o~U(t) + 5 ~ [x~(t -- rj) --  Fj] + V(t) + I(t) 
j = l  

and 

17(t) = - - u V ( t )  + 7 ~ [&(t - -  r~) - -  1"51 + U(t),  
j= l  

m 
with initial data U = x and V = )-~'~=1 ~'~ " Then U ~> x and V >f- z~ for all t ~> 0. 
Hence, by Corollary 2 of Grossberg, ~) the solution of Eqs. (49)-(51) will be bounded if 

2(~U) 1/2 

for all sufficiently large t and some e > 0, which is true if Eq. (68) holds. 
The discussion of completely recurrent networks is more difficult because the 

terms [x~(t - -  r) - -  Pj]+ cannot be independently controlled. It suffices in applications 
to start the system in equilibrium (i.e., with zero initial data), and then to subject 
it to an arbitrary collection of suitably bounded inputs. 

8.2.  P r o p o s i t i o n  3 

Let Eqs. (51) and (58) be given with zero initial data, and let the total input I ( t )  
satisfy 

a + u l 3  [9 8 ~ u  ]1/'2 I 
4 - -  4 (~ -? U) 2 

x ( F +  ~ + u 8~u 
2-~ 7--v)  I (~ -k- u) = 

3 9 8~u 11/~fl/2~ 
2 + [ 4  ( ~ T u )  2j ~ l" (69) 
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Then the solution of  Eqs. (51) and (58) is bounded.  In particular, if ~ = (n --  1) u 
and 

[11110~ < -~  (1 --  1)[/-, @ u [ ( 1 6 / 3 ) -  811/3 nl/Z ] (70) 
' 2 ( / 3  + v) 

for  some ~ > 0 and n sufficiently large, then the solution is bounded. 

$.2.1. P roo f .  Define U and V by the equations 

r = - -o~U(t)  + ~ [ U ( t  - -  .c) - -  _P]+ V ( t )  + I ( t )  (71) 

and 

~ ( t )  = - - u V ( t )  + v [ U ( t  - -  ~) - - / - ' ] +  U(t), (72) 

where U and V have zero initial data. Then U >~ x and V >~ z~ for all t >~ 0. Consider 
the function 

A(t) = --  �89 + u) + �89 + u) ~ --  {4au - -  (~  + v) 2 [U( t  - -  r )  - -  F]~})l/2. 

Suppose we could find an e, 0 < e < 1, such that 

4 a u  - -  (~  + v) 2 [U( t  - -  T) - -  -Pl ~ >/ E(er + u) ~ (73) 

for  t >~ 0. Then t ( t )  <~ --~/E, where 

�9 /E = �89 + u)[1 - -  (1 - -  E)1/2]. (74) 

Letting N --- ( U  2 4- V2) l/z, Corollary 2 of  Grossberg (2) implies, for  every t >~ 0, that  

g ( t )  <. N ( t )  ~< ~7~ -x li Ill~o, (75) 

and thus the solution would be bounded.  Equat ion (73) will follow if 

F 4- [4~u --  e(~ 4- ~/)2]1/2 ) U(t  - -  ~'). 
/ 3 + v  

This inequality, along with Eq. (75), can be achieved for  all t >~ 0 if 

II ii/  .< + I 
B +  v 

for  some e such that 0 < e < 1. In particular, letting 

F ( ~ )  = [1  - -  ( 1  - -  E ) I / 2 ]  ( . 4  - -  e ) ~ / 2  

where A = 4~u(e~-  u) -2, it suffices to find an % such that  0 < e 0 < A which 
maximizes F(e), and then constrain I ( t )  such that 

(~  + u) ~ ~,, , 

This we now do. 
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To maximize F(e), make the change of variable 8 8 = 1 -- e, and define 

f @  - =  F ( 1  - -  8~)  = (1 - -  8 ) ( 8  2 - -  B )~ /2  (77) 

where B = 1 -- A and X/B ~ 3 ~< 1. Computing the value 8 = 8 o which maximizes 
f(8) for ~/B ~< 8 ~< 1 by solving/'(8) = 0 yields 

~(~ 2A) 1/~. 8o = �88 + ~(~ -+- 2B) ~/2 -i -~ 1 9 

Computing E o = 1 --802 and substituting in ~, and F(E) yields by Eq. (76) the 
criterion Eq. (69) for boundedness. 

We now estimate the right-hand side of Eq. (69) in the case a = (n --  1) u for 
fixed u as n becomes large. Denoting this function of n by G~, we find 

G , ~ = -  4- - ~ n 2 

( nu I 8 (n- -  1) 
X / ' +  2 ( /~+v)  n 2 

3 9 8 ( n -  1) 1/2fl/~ ] ) 
G~ can be estimated from below as follows. For  every n >~ 1, 

3 [9 8 (n - -  1) ] 1/2 8 ( n - - l )  
- -  4 --"  n 2 ] >~ 3 n 2 

Furthermore the inequality 

holds if 

8 (n - -  1) 3 9 8 (n - -  1) z/211/~ 
n ~ 2 + [ 4  n z ] >~ kn-1/2 

(16 -- 3k2)n >~16 -}- k 4+ 16(nn-- 1) [ 4 - - k  2 - 4 ] ,  

which is true for n sufficiently large if k = [(16/3) -- 3] 1/2 for some 8 such that 
0 < 8 < 16/3. Thus if c~ = (n -- 1) u and n is sufficiently large, 

u[(16/3) -- 8] nl/2], 
C~ > ? ~ ( 1  -- ! ) I v +  2(~ + v) 

so that Eq. (70) implies Eq. (69) for n sufficiently large, and in turn the boundedness 
of the solution. 

Boundedness for cases in which Eq. (54) replaces Eq. (51) can be studied using 
Corollary 3 of Grossberg, (2) or a direct analysis of oscillations. The latter procedure 
is illustrated below. The bound on inputs in these cases can grow like ~ rather 
t h a n  O~ 1/2. 
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8.3. Proposition 4 

Let Eqs. (49), (50), and (54) be given with nonnegative and continuous initial 
data and inputs such that 

/3-v >~ ~ + exp[-- cq(t -- -rj -- v)] Ij(v) dv -- F~ (78) 
j = l  ~ r  

for some E > 0 and t sufficiently large. Then the solution is bounded. 

and 

8o3.1. Proof. For times t at which Eq. (78) holds, consider the system 

C: = - ~ g  +/3 ~ m~vj§ + 11 I[1| 
j = l  

(79) 

~ = (-uVj+ + vu) wr (8o) 

where Wj = [xj(t -- 7~) -- Fj]+, j = 1, 2,..., m, having initial data U = x ~ ~i=m+l xi 
and Vj = zj ---- 2-i=~+1 zj~. Then U ~> x and V~ >~ zj thereafter. 

Define V = max,. Vj. Divide the t ime'scale into mutually nonoverlapping 
intervals A1, Ba, A2, B2 ,... such that uV(t) > vU(t) for t z w,  AM and uV(t) <~ vU(t) 
for t ~ u ,  B~. For t ~ A ,  = (anz, a,2), uv-lV(a,l)  >~ U(t), since V(t) is monotone 
decreasing by Eq. (80). For t z B~ = [b~a, b,~2], 

which implies 

au j ~  

U(b~) <~ max[U(b,a), U(el3V) -1 t] II]~o], 

or by the preceding case, 

U(b.+l.z) <~ max[U(b.1), u(~fiv) -~ I] Ilia] 

The boundedness of U readily follows, and, from this, the boundedness of all Vj 
by Eq. (80). 

9. ENERGY-ENTROPY DEPENDENCE 

This section shows that the total potential is maximized (minimized) if the 
spatial pattern comprising the input has minimum (maximum) entropy. These results 
can be extended to space-time patterns by approximating these patterns by sequences 
of spatial patterns. The heuristic point of these results is that the learning mechanism 
of the networks allows those environmental demands which have the most order 
in them to energetically drive more of the cellular filters needed to discriminate these 
demands. Of course, the patterns that are preferred will depend on the network 



Recurrent and Nonrecurrent  Signed Networks 343 

geometry. Below we consider cases in which all geometrical asymmetries are eli- 
minated by choosing all network parameters independent  of  j. First, we give examples 
of  the solutions of  nonrecurrent  full networks as functions of  the pat tern weights 
0 = (01,02 ..... On). Thus let 

and 

ec~ = - ~ x ~ ( t )  + OJ(O, 

j = l  

e(jo)(t) = -uz~O)(t) + r[x(O)(t - ~) - v ] +  x?)(O, 

(81) 

(82) 

(83) 

where j = 1, 2 ..... m, and i = m + 1, m + 2 ..... m 4- n. Superscripts " (0)"  here 
refer only to dependence on the pat tern 0, and do not  mean x~ ~ = x~ --  Oi as in 
Proposi t ion 1. For  example, denote the total potential  of  Eqs. (81)-(83) by 
x (~ x-"~+~ :c (~ Let x (e) denote the total potential  corresponding to a pat tern  0 = / - . . i = r a + l - - i  �9 

with some 0~ = 1, and let x (I) denote the total potential if all 0j = 1Ira. Fur thermore ,  
define .Q(0) = Y.~ j=1 0J 2 for all 0. 

9.1. Theorem 2 (Majorization of Total Potential) 

Let the systems (81)-(83) be given with nonnegative and continuous initial da ta  
and inputs, and the same total inputs J(t)  and I ( t ) =  Li=~+l i(t). Let all x j ,  
j = l, 2,..., m, have zero initial data for  convenience. Also, suppose there exist 
positive constants ~, v, and co and a constant T ~  such that 

and 

(B + v) f 
t 

~>/, 4- exp[--  %(t - -  v)] J(v) dr, where o~ >~ u, (84) 
0 

f t  e-~(t-v~I(v) dv ~ v, (85) 
o 

f l  e-~{~-v)[fl  exp[--  % ( v - -  ~)] J(~:)d~: - -  f ' ]+  dv ) co, (86) 

for t ) T, ,~.  Then for any pattern 0 =/: 8, there exists an q0 > 0 and a T~o such that  

x(~)(t) >~ x(~ + e~o for  t >/ T~o. (87) 

If  moreover  the threshold /~ = 0, then for any two patterns 02 and 02, there exists 
an q2 > 0 and a T12 such that 

x(~ >/x(~ 4- q2 if f2(02) > f2(0z) and t >~ T12. (88) 

Analogous results hold for x (s) as a minorante  for  all x (~ 

Szz/ilz-S 
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and 

with 

9.| .1. Proof. By definition, 

~(e)(t) : --c~x(O~(t) -k fi[K(t) -- /'1+ z'~)(t) q- I ( t )  

whereas 

and 

~(8)(t) = --uz(~)(t) -k 7[K(t) -- F] + x(~(t) ,  

K( t )  = O, t <~ "r 

f~-" exp[--~l(t -- r v)] J(v) dr, t > r 
o 

2(~ = --c~xC~ + fi ~ [OjK(t) - -  F] + z~)(t)  -k I ( t )  
j = l  

2(~ = - -uz~)( t )  q- 7[O ~K(t) - - / ' 1+  x(~ 

Letting U = x (~) --  x (~ and Vj = z (~ --  z} ~ we find 

and 

where the functions 

(I = - ~ u  + ~ ~ [OjK- 11]+ V~ + w 
j = l  

12j = --uV~ q- y [K  - -  F] + U -k Yj, 

W-/3z ~e) ([K- -P]+- ~ [OjK-- /~]+) 
j = l  

gj = 7x(~ F] + -- [OjK- F]  +) 

(89) 

(9O) 

and 

(91) 

(92) 

(93) 

(94) 

(95) 

which by Eq. (86) shows that z(e)(t) has a positive lower bound for large t. But then 
by Eqs. (86) and (93), and the nonnegativity of all Vj, U also has a positive lower 
bound for large t, since 0 :/= 3. In other words, Eq. (87) holds for suitable e~,o and To,o. 

This has been shown only for a fortunate choice of initial data. The proof is 

f 
~ 

z(~)(t) >~ 7 e-~It-~)[K(v) - - / "]+ x(~)(v) dv, 
0 

are nonnegative. Given initial data such that U >~ 0 and all V~ ~> 0, then Eqs. (93) 
and (94) imply U >~ 0 and all V~ ~> 0 for t ~> 0. In fact, Eqs. (85) and (89) imply 
that x~8)(t) >~ v for T, vo~. Since oL ~> u, Eq. (90) implies that 

(96) 
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completed by noting that under the hypothesis (84), any two solutions (x ~om, z ~a)) 
and (x (~,~), z Io,z)) of Eqs. (89) and (90) are asymptot ical ly  equivalent; that is, 

lim[xIe'l'(t)t~oo -- xIO'~)(t)] = ~ im[z(~'a)(t) -- z'e'z)(t)] ----- 0. 

This follows readily by the method used in Proposition 2, which in turn depends on 
Corollary 2 of Grossberg. ~) 

To prove Eq. (88), l e t / "  = 0. We consider explicitly the case in which all 0~. > 0. 
Choose the initial data such that O~z~(O) is independent of j .  Then the system (89)-(90) 
takes the form 

and 

e~~ =- - ~ x ( ~  + ~f2(O) K( t )  ~~ + I ( 0  

~l~ = --u~(~ + v K ( t )  x(~ 

where ~(t) = ~j=~ 07azJ~ Now consider any two patterns 0x and 0 z such that 
X2(01) < ~(02). Comparison of two solutions (x (e~), ~lo~)) and (x  (~ ~(o~)) given equal 
initial data shows that Eq. (88) holds for some e~2 and T~ .  Then asymptotic 
equivalence can be proved as above to derive Eq. (88) for all initial data. 

The proof of inequality (87) for completely recurrent networks is more difficult 
at the stage of  demonstrating asymptotic equivalence. A proof is given below in the 
case ~" = 0, under constraints which also guarantee that any two bounded solutions 
of the maximizing system do not oscillate relative to one another at large times. 
One might hope that analogous results hold for all ~- > 0. 

Consider the system 

and 

2!01  ~ _ ( 0 )  = - ~  + / 3  [x~ ~ - r ] +  z(. ~ + OJ  JZ 

3=1  

(97) 

~ol = - - "~  _(o) + 7[x~O) _ / - ] +  x~O), (98) 

defined for any pattern 0 ~ (0~, 02 , . . ,  On) and i, j = 1, 2 ..... n. The pattern 0 = 8 
cannot be perfectly learned i f /~  > 0. On the other hand, any pattern with positive 
weights that approximates S can be learned by choosing/"  sufficiently small and I 
sufficiently large. Moreover, if 0 = 3 with (say) 0i --~ 1, and if x~ ~i and z~ I have 
positive initial data whereas all other x~ ~ and ~ji-(*) have zero initial data, then by 
Proposition 1, the system (97)-(98) has the form 

Sc(~) = - - ~ x  I~) + fi[x r --  F]+ z I~) + I (99) 

and 
~(~) = - u z  (~) + ~,[x(~) - F]+ x (~) (100) 

for all t >~ 0, where we have omitted subscripts i for convenience. We will now show 
that the system (99)--(100) majorizes all systems for which 0--fi 8 under suitable 
constraints. 

822III~-8" 
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9.2. Theorem 3 

Let the systems (97)-(98) be given with nonnegative and continuous initial data 
and inputs such that the solutions are bounded and Eq. (52) holds. Suppose that 

.>/u and that there exist positive constants/x and T~ such that 

e -~(t-~) ~) d~ - -  F dv >~ t*, t >~ T . ,  (101) 
o 

fi vu-~K2 > II I I G ,  (102) 

and 
2 f l v u - 2 M - 2 ( [ K _  /-,)+)a > p, (103) 

where K is defined by the recursion of Corollary 4 given 0 = 8, and M is an upper 
bound for x (e) given any admissible initial data (cf. Proposition 3). Then given any 
pattern 0 =/= 3, there exist positive constants ~0 and Tao such that Eq. (87) holds. 
Moreover, the vector functions 

IX(Or ) __ X(~2)] 
G ' =  _ z(o.>) 

which compare any two bounded solutions (x 181), z (.1)) and (x (8~), z (e~)) of (99)-(100), 
have fixed sign for large t and zero limit as t --+ oe. 

A similar comparison theorem holds between x (~ and x (s). 

and 

where 

and 

9.2.1. Proof. Letting U = x (8) -- x (~ and V~. = z (~ - -  z~ ~ we find 

~2 --- --~U + fi ~ [x~ ~ -- Pl  + V~ + W 
j = l  

(lO4) 

l?j = - u V j  + v[x (~) - / - ' ] +  U + Yj, 

W =/3z(~) ~ ([x (~) - f']+ - [x~ ~ - _r']+) 
9=1 

(105) 

(106) 

Y j  = vxI~ ~~ -- /~1+ -- [x I~ -- F] +) (107) 

are nonnegative if U ~> 0. Thus starting with initial data such that U >~ 0 and 
all Vj~>0 implies U~>0 and all Vj~>0 for t>~0.  By Eq. (52) with T = 0  and 
Eq. (99), x c~) has a positive lower bound for large t. Thus by Eqs. (100) and (101) 
and the inequality a ~> u, z I~) has a positive lower bound for large t. By Eqs. (104) 
and (105), this will imply the existence of a positive lower bound for U if 

f t e-~Ct-~)([x(81(v) - -  F ]  + - -  [x~~ -- /- ']+) dv 
j ~ l  0 

(108) 
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has a positive lower bound for large t. By Eq. (52) and the boundedness of solutions, 
Theorem 1 implies that [x~ ~  ~-~ [Oix (~ - - / ' ]+,  where x I~) >~ x (~ Thus by 
Eq. (108), U has a positive lower bound for large t, and Eq. (87) holds for this choice 
of initial data. 

The above analysis can be carried out for all ~->~ 0. The proof below of 
asymptotic equivalence for solutions of (99)-(100) holds only if ~" = 0. We will 
assume that / - '  > 0 below, since the case/"  = 0 is more easily treated. 

For simplicity, denote any two solutions of (99)-(100) by (x~, z~) and (x~, zz), 
and define the variables Fi~ = xix2 ~ --  1, Gi~ = z~/Zz-f ~/z --  
{i, j} = {1, 2}. We will derive systems of the form 

and 

1, and H~. = f~  -- giJ for 

Fi~ = ai~Fi~ + bi~Gi~, (109) 

Pi~ = %Fi~ + di~Gi~, (110) 

G~ = --ei~Gi~ + fi~Fi~, (111) 

(;i~ : gi~Gi~ + hi~Hi~, (112) 

t:Ii~ : ki~Hi~ + mingle, (113) 

where for both choices of {i, j} = {1, 2}, all coefficients are continuous and bounded, 
and the coefficients bij, % ,  % ,  J~.j, giJ, and hi5 have positive lower bounds for 
large t. For one choice of {i, j} = {1, 2}, the coefficient rni~ will have a positive lower 
bound for large t if F~j(t)Gi~(t)>~ O. For the same choice of {i, j }  = {1, 2}, the 
coefficient dij will have a positive lower bound if also F~j(t) H~j(t) <~ 0 for large t. 
Moreover, all second derivatives Fi j ,  Gij, and Hij are bounded. 

Using these facts, the proof can be completed as follows. Since b~j >~ 0 and 
fi~ ~> 0, Eqs. (109) and (111) imply that F~j and Gi~- change sign at most once, and not 
at all for t ~> to if F~(to) G~j(to) >~ O. Suppose F~j(t) Gi~(t) <~ 0 at all large t. Then 
since also ei~ ~> 0, G~ has fixed sign for large t, whence lim~o G~j(t) exists. But G~ is 
bounded, and thus also limt_,~ G~s(t)= 0. Since ei; and f~j have positive lower 
bounds, Eq. (111) implies limt~F~(t)-----lim~_~ G~j(t) ---- 0, which completes the 
proof in this case. In the only remaining case, F~j(t) Gis(t) > 0 for large t. 

Supposing that Fij(t) Gij(t) > 0 for large t implies the nonnegativity of mij. 
Using this fact along with the constant sign of G~ for large t shows that H~j changes 
sign at most once for large t, and not at all for t ~> to if G~j(to) H~j(to) >~ O. Suppose 
Gij(t) Hij(t) >~ 0 for large t. Then by Eq. (112) and the nonnegativity of gi~ and hij, 
G~(t) has fixed sign for large t, limt_~ Gi~(t) exists, and we argue as above that 
limt-~ G~ (t) = limt~o~ His(t) = 0, which completes the proof in this case. 

It remains only to consider the case for which F~j(t) G~(t) >/0 and Gi~(t) H~(t)  <~ 0 
for large t. In this case, also F~i(t) G~i(t) >~ 0 and G~(t) H~i(t) <~ 0 for large t, by the 
definitions of F~ ,  Gi~, and H~ .  For at least one choice of {i, j} = {1, 2}, however, 
ci~ and d~. have positive lower bounds. For this choice, Eq. (1 I0) shows that ~'i~(t) has 
fixed sign for large t, which as above shows that l i m ~  F~(t) = l i m ~  Gig(t) = O, 
thereby completing the proof. 
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ai~ = xT~( f lFz  ~ - -  I ) ,  

% - -  x;~([~z~x i - I ) ,  

% = �89 - r )  c,5~ + (x~ - r)], 

gi~ = �89 

Stephen Grossberg 

The system (109)-(113) will now be derived. We will show that for large t, 

b .  = ~z~x ;~ (x i  - F)(1 + C.), 

f .  = � 8 9  i - ~ )  c ; )  + x~], 

hit = l l )x~z; l[ (x i  - -  ]'~) C~. 1 AN x~], 

k i t  : 1 / ) x j z ~ - l [ ( F -  xi)  C-~j 1 --  x4 ] -]- x j l (~Inz~ - -  I ) ,  

and 

mi~ = t3zjx71(x i - -  F)(1 + C i )  - -  �89 1 + x [ l ( f l I ' z j  - -  I ) .  

First use the equation (fg-1). = g - ~ ( f _ f ~ - l )  on the functions Ai~ = xix-;  1 and 
a i j  = ZiZ~ 1 to prove that for large t, 

A , j  = X ; l ( I -  / ~ f f Z - ) ( 1  - -  Ai~ ) -{- ~Z~X;I(xi - -  / ~ ) ( B / j  - -  l )  

and 

Bi j  = vxgzT~l(A~ - -  B i j )  + vT'xjz-[I(Bi j  - -  A i ) "  

The term (xi -- U) equals [xi - -  F] + for large t by Eq. (103). Then letting Ci~ R 1/~ = - - i J  
we find 

and 

Ai j  = x71( f lFz j  - -  I)(Ai~ - -  1) + fizr - -  F)(1 + Cij ) (Ci j  - -  1) (114) 

Bi j  = vxgz - [ l (A i j  + C~j)(Ai~ - -  G j )  + v F x f [ l ( 1  + Ci j ) (Ci j  - -  1) + vFxjz-[ l (1  - -  Ai j ) .  

(115)  

Equation (114) can also be written as 

A i j  = x-[ l[ f iFzj  - I + fiz~(xi - F ) ] ( A i j  - 1) + flz~x-;l(xi - / " ) ( 2  + Ci~ - Ai~)(Cij  - 1), 
(116) 

and Eq. (1 t 5) can be written in two ways as 

and 

Bi j  = vx jz -[ l [x j (Ai j  + Cij)  - -  F ] ( A i j  - -  1) 

+ vxX[X[F(1  + Cir - x j (Air  + Ci~)](Cij -- 1) (117) 

B~j : vxyzTl[xj(Ai~ + Cij)  - -  T'](Ai~ - -  Cij)  + vI 'x~z[1Cij (Ci~ - -  1). (118) 
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Since Ci~ = � 89  Eqs. (117) and (118) imply 

CiJ = �89  - -  F )  + x jCi~](ais  - -  1) 

+ �89 - x i )  + C i ~ ( 1 " -  x~)](Ci; - 1) 

and 

Oij = �89  - -  1") q-  x t C i j ] ( A i j  - -  Cij)  + �89 - -  1). 

Now subtract Eq. (120) from Eq. (116) to find 

(119) 

020) 

(Ai j  - G; )"  = { � 8 9  - x 3  - x j G j l  + x ; ~ ( S F z j  - O}(Ai~ - -  G J )  

+ [ S z t x ? ~ ( x i  - -  1")(1 + G ; )  

- -  �89 1 -[- XJ-I([~1"Zt - -  / ) ] ( G j  - -  1). (121) 

Noting that Fit = A i j  -- 1, Gi3. = Bi~. -- 1, and H i j  ~- A i j  - -  B i t ,  Eqs. (114), (116), 
(119), (120), and (121) take the form (109)-(113) given the above definitions of the 
coefficients. 

The coefficients bij, % ,  f~j, git,  and hit have positive lower bounds for large t 
if 1" > 0, since by Eq. (103) and the boundedness of solutions, both xt -- 1" have 
positive upper and lower bounds for large t. The coefficient cit has a positive lower 
bound for large t by Eq. (102). Coefficient mit also has a positive lower bound for 
large t if Gi3. ~> 0 (i.e., Cij ~> 1) for some choice of{i, j} = {1, 2}, since then 

rnij >~ 2f iz jx71(xi  - 1") - -  �89 + x ; l ( f i F z j  - -  I )  

= x ; l ( S z t x i  - I )  + 5x t z71[z2x?~(x i  - 1") - �89 

By Eqs. (102) and (103), respectively, ( f l z jx i  - -  I )  and z t2x -9(x i  - -  1") - -  �89 have 
positive lower bounds for large t. 

It remains only to show that dij has a positive lower bound for large t if H~t ~< 0 
(i.e., Cij  >~ Ai~), given the above choice of{i, j} = {1, 2}. In this case, 

dij >~ 2ztx-[Z(xi - -  F ) ,  

from which the claim is obvious. The proof is therefore complete. 
In networks free from learning, such as the nonrecurrent full network 

m 

& ( O  = - ~ x i ( t )  + 3 V~ [OtK(t) - -  V]+ + zi(t), 
j = l  

i = m -k l, m -k 2,..., m + n, and the completely recurrent network 

& ( t )  -= --o~xi( t)  4-  fl ~ [xt( t  - -  r )  - -  F] + -5 Oil(t) ,  
j= l  
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i = 1, 2,..., n, est imates o f  the above  type can be p roved  i f / 1  > 0. I f / "  = 0, x(t)  is 
independent  o f  0. Such ne tworks  are  p resumably  found  nearest  to per iphera l  receptors ,  
where an unbiased  response to experiential  inputs  is required,  as i l lus t ra ted by  the 
fo rmal  reduct ion  o f  our  equat ions  to the Har t l i ne -Ra t l i f f  equat ion  in the absence of  
learning,  in response to s teady-state  inputs ,  and  in the presence o f  pure ly  inhib i tory  
in teract ions  across cells (Grossberg,  ~6~ Section 13). 
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